std::to_array
From cppreference.com
Defined in header <array>
|
||
template<class T, std::size_t N> constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N]); |
(1) | (since C++20) |
template<class T, std::size_t N> constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&&a)[N]); |
(2) | (since C++20) |
Creates a std::array from the one dimensional built-in array a
. The elements of the std::array
are copy-initialized from the corresponding element of a
. Copying or moving multidimensional built-in array is not supported.
1) For every
i
in 0, ..., N - 1
, copy-initializes result's correspond element with a[i]. This overload is ill-formed when std::is_constructible_v<T, T&> is false.2) For every
i
in 0, ..., N - 1
, move-initializes result's correspond element with std::move(a[i]). This overload is ill-formed when std::is_move_constructible_v<T> is false.Both overloads are ill-formed when std::is_array_v<T> is true.
Parameters
a | - | the built-in array to be converted the std::array |
Type requirements | ||
-T must meet the requirements of CopyConstructible in order to use overload (1).
| ||
-T must meet the requirements of MoveConstructible in order to use overload (2).
|
Return value
1) std::array<std::remove_cv_t<T>, N>{ a[0], ..., a[N - 1] }
2) std::array<std::remove_cv_t<T>, N>{ std::move(a[0]), ..., std::move(a[N - 1]) }
Notes
There are some occasions where class template argument deduction of std::array cannot be used while to_array
being available:
-
to_array
can be used when the element type of thestd::array
is manually specified and the length is deduced, which is preferable when implicit conversion is wanted. -
to_array
can copy a string literal, while class template argument deduction constructs astd::array
of a single pointer to its first character.
std::to_array<long>({3, 4}); // OK: implicit conversion // std::array<long>{3, 4}; // error: too few template arguments std::to_array("foo"); // creates std::array<char, 4>{ 'f', 'o', 'o', '\0' } std::array{"foo"}; // creates std::array<const char*, 1>{ +"foo" }
Feature-test macro: | __cpp_lib_to_array |
Possible implementation
First version |
---|
namespace detail { template <class T, std::size_t N, std::size_t... I> constexpr std::array<std::remove_cv_t<T>, N> to_array_impl(T (&a)[N], std::index_sequence<I...>) { return { {a[I]...} }; } } template <class T, std::size_t N> constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N]) { return detail::to_array_impl(a, std::make_index_sequence<N>{}); } |
Second version |
namespace detail { template <class T, std::size_t N, std::size_t... I> constexpr std::array<std::remove_cv_t<T>, N> to_array_impl(T (&&a)[N], std::index_sequence<I...>) { return { {std::move(a[I])...} }; } } template <class T, std::size_t N> constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&&a)[N]) { return detail::to_array_impl(std::move(a), std::make_index_sequence<N>{}); } |
Example
Run this code
#include <type_traits> #include <utility> #include <array> #include <memory> int main() { // copies a string literal auto a1 = std::to_array("foo"); static_assert(a1.size() == 4); // deduces both element type and length auto a2 = std::to_array({ 0, 2, 1, 3 }); static_assert(std::is_same_v<decltype(a2), std::array<int, 4>>); // deduces length with element type specified // implicit conversion happens auto a3 = std::to_array<long>({ 0, 1, 3 }); static_assert(std::is_same_v<decltype(a3), std::array<long, 3>>); auto a4 = std::to_array<std::pair<int, float>>( { { 3, .0f }, { 4, .1f }, { 4, .1e23f } }); static_assert(a4.size() == 3); // creates a non-copyable std::array auto a5 = std::to_array({ std::make_unique<int>(3) }); static_assert(a5.size() == 1); // error: copying multidimensional arrays is not supported // char s[2][6] = { "nice", "thing" }; // auto a6 = std::to_array(s); }
See also
(library fundamentals TS v2) |
Creates a std::array object whose size and optionally element type are deduced from the arguments (function template) |