std::unordered_map<Key,T,Hash,KeyEqual,Allocator>::unordered_map
unordered_map() : unordered_map( size_type(/*implementation-defined*/) ) {} explicit unordered_map( size_type bucket_count, |
(1) | (since C++11) |
unordered_map( size_type bucket_count, const Allocator& alloc ) |
(1) | (since C++14) |
explicit unordered_map( const Allocator& alloc ); |
(1) | (since C++11) |
template< class InputIt > unordered_map( InputIt first, InputIt last, |
(2) | (since C++11) |
template< class InputIt > unordered_map( InputIt first, InputIt last, |
(2) | (since C++14) |
template< class InputIt > unordered_map( InputIt first, InputIt last, |
(2) | (since C++14) |
unordered_map( const unordered_map& other ); |
(3) | (since C++11) |
unordered_map( const unordered_map& other, const Allocator& alloc ); |
(3) | (since C++11) |
unordered_map( unordered_map&& other ); |
(4) | (since C++11) |
unordered_map( unordered_map&& other, const Allocator& alloc ); |
(4) | (since C++11) |
unordered_map( std::initializer_list<value_type> init, size_type bucket_count = /*implementation-defined*/, |
(5) | (since C++11) |
unordered_map( std::initializer_list<value_type> init, size_type bucket_count, |
(5) | (since C++14) |
unordered_map( std::initializer_list<value_type> init, size_type bucket_count, |
(5) | (since C++14) |
Constructs new container from a variety of data sources. Optionally uses user supplied bucket_count
as a minimal number of buckets to create, hash
as the hash function, equal
as the function to compare keys and alloc
as the allocator.
[first, last)
. Sets max_load_factor() to 1.0. If multiple elements in the range have keys that compare equivalent, it is unspecified which element is inserted (pending LWG2844).other
, copies the load factor, the predicate, and the hash function as well. If alloc
is not provided, allocator is obtained by calling std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.get_allocator()).
The template parameter |
(since C++23) |
other
using move semantics. If alloc
is not provided, allocator is obtained by move-construction from the allocator belonging to other
.
The template parameter |
(since C++23) |
init
, same as unordered_map(init.begin(), init.end()).Parameters
alloc | - | allocator to use for all memory allocations of this container |
bucket_count | - | minimal number of buckets to use on initialization. If it is not specified, implementation-defined default value is used |
hash | - | hash function to use |
equal | - | comparison function to use for all key comparisons of this container |
first, last | - | the range to copy the elements from |
other | - | another container to be used as source to initialize the elements of the container with |
init | - | initializer list to initialize the elements of the container with |
Type requirements | ||
-InputIt must meet the requirements of LegacyInputIterator.
|
Complexity
first
and last
other
alloc
is given and alloc != other.get_allocator(), then linear.init
Exceptions
Calls to Allocator::allocate
may throw.
Notes
other
remain valid, but refer to elements that are now in *this. The current standard makes this guarantee via the blanket statement in [container.requirements.general]/12, and a more direct guarantee is under consideration via LWG 2321.
Although not formally required until C++23, some implementations has already put the template parameter Allocator
into non-deduced contexts in earlier modes.
Example
#include <unordered_map> #include <vector> #include <bitset> #include <string> #include <utility> struct Key { std::string first; std::string second; }; struct KeyHash { std::size_t operator()(const Key& k) const { return std::hash<std::string>()(k.first) ^ (std::hash<std::string>()(k.second) << 1); } }; struct KeyEqual { bool operator()(const Key& lhs, const Key& rhs) const { return lhs.first == rhs.first && lhs.second == rhs.second; } }; struct Foo { Foo(int val_) : val(val_) {} int val; bool operator==(const Foo &rhs) const { return val == rhs.val; } }; namespace std { template<> struct hash<Foo> { std::size_t operator()(const Foo &f) const { return std::hash<int>{}(f.val); } }; } int main() { // default constructor: empty map std::unordered_map<std::string, std::string> m1; // list constructor std::unordered_map<int, std::string> m2 = { {1, "foo"}, {3, "bar"}, {2, "baz"}, }; // copy constructor std::unordered_map<int, std::string> m3 = m2; // move constructor std::unordered_map<int, std::string> m4 = std::move(m2); // range constructor std::vector<std::pair<std::bitset<8>, int>> v = { {0x12, 1}, {0x01,-1} }; std::unordered_map<std::bitset<8>, double> m5(v.begin(), v.end()); //Option 1 for a constructor with a custom Key type // Define the KeyHash and KeyEqual structs and use them in the template std::unordered_map<Key, std::string, KeyHash, KeyEqual> m6 = { { {"John", "Doe"}, "example"}, { {"Mary", "Sue"}, "another"} }; //Option 2 for a constructor with a custom Key type // Define a const == operator for the class/struct and specialize std::hash // structure in the std namespace std::unordered_map<Foo, std::string> m7 = { { Foo(1), "One"}, { 2, "Two"}, { 3, "Three"} }; //Option 3: Use lambdas // Note that the initial bucket count has to be passed to the constructor struct Goo {int val; }; auto hash = [](const Goo &g){ return std::hash<int>{}(g.val); }; auto comp = [](const Goo &l, const Goo &r){ return l.val == r.val; }; std::unordered_map<Goo, double, decltype(hash), decltype(comp)> m8(10, hash, comp); }
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 2193 | C++11 | the default constructor is explicit | made non-explicit |
See also
(C++11) |
assigns values to the container (public member function) |