std::apply
From cppreference.com
Defined in header <tuple>
|
||
template< class F, class Tuple > constexpr decltype(auto) apply( F&& f, Tuple&& t ); |
(since C++17) (until C++23) |
|
template< class F, class Tuple > constexpr decltype(auto) apply( F&& f, Tuple&& t ) noexcept(/* see below */); |
(since C++23) | |
Invoke the Callable object f
with a tuple of arguments.
Parameters
f | - | Callable object to be invoked |
t | - | tuple whose elements to be used as arguments to f
|
Return value
The value returned by f
.
Exceptions
(none) |
(until C++23) |
noexcept specification:
noexcept( noexcept(std::invoke(std::forward<F>(f), std::get<Is>(std::forward<Tuple>(t))...)) where
|
(since C++23) |
Notes
The tuple need not be std::tuple, and instead may be anything that supports std::get and std::tuple_size; in particular, std::array and std::pair may be used.
Feature-test macro: | __cpp_lib_apply |
Possible implementation
namespace detail { template <class F, class Tuple, std::size_t... I> constexpr decltype(auto) apply_impl(F&& f, Tuple&& t, std::index_sequence<I...>) { // This implementation is valid since C++20 (via P1065R2) // In C++17, a constexpr counterpart of std::invoke is actually needed here return std::invoke(std::forward<F>(f), std::get<I>(std::forward<Tuple>(t))...); } template <class F, class Tuple, class Idx> inline constexpr bool apply_is_noexcept = false; template <class F, class Tuple, std::size_t... I> inline constexpr bool apply_is_noexcept<F, Tuple, std::index_sequence<I...>> = noexcept(std::invoke(std::declval<F>(), std::get<I>(std::declval<Tuple>())...)); } // namespace detail template <class F, class Tuple> constexpr decltype(auto) apply(F&& f, Tuple&& t) noexcept( // since C++23 detail::apply_is_noexcept<F, Tuple, std::make_index_sequence<std::remove_reference_t<Tuple>>> ) { return detail::apply_impl( std::forward<F>(f), std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size_v<std::remove_reference_t<Tuple>>>{}); } |
Example
Run this code
#include <iostream> #include <tuple> #include <utility> int add(int first, int second) { return first + second; } template<typename T> T add_generic(T first, T second) { return first + second; } auto add_lambda = [](auto first, auto second) { return first + second; }; template<typename... Ts> std::ostream& operator<<(std::ostream& os, std::tuple<Ts...> const& theTuple) { std::apply ( [&os](Ts const&... tupleArgs) { os << '['; std::size_t n{0}; ((os << tupleArgs << (++n != sizeof...(Ts) ? ", " : "")), ...); os << ']'; }, theTuple ); return os; } int main() { // OK std::cout << std::apply(add, std::pair(1, 2)) << '\n'; // Error: can't deduce the function type // std::cout << std::apply(add_generic, std::make_pair(2.0f, 3.0f)) << '\n'; // OK std::cout << std::apply(add_lambda, std::pair(2.0f, 3.0f)) << '\n'; // advanced example std::tuple myTuple{25, "Hello", 9.31f, 'c'}; std::cout << myTuple << '\n'; }
Output:
3 5 [25, Hello, 9.31, c]
See also
(C++11) |
creates a tuple object of the type defined by the argument types (function template) |
(C++11) |
creates a tuple of forwarding references (function template) |
(C++17) |
Construct an object with a tuple of arguments (function template) |
(C++17)(C++23) |
invokes any Callable object with given arguments and possibility to specify return type (since C++23) (function template) |