std::unwrap_reference, std::unwrap_ref_decay
From cppreference.com
                    
                                        
                    < cpp | utility | functional
                    
                                                            
                    |   Defined in header  <type_traits>
  | 
||
|   Defined in header  <functional>
  | 
||
|   template< class T > struct unwrap_reference;  | 
(1) | (since C++20) | 
|   template< class T > struct unwrap_ref_decay;  | 
(2) | (since C++20) | 
1) If 
T is std::reference_wrapper<U> for some type U, provides a member typedef type that names U&; otherwise, provides a member typedef type that names T.2) If 
T is std::reference_wrapper<U> for some type U, ignoring cv-qualification and referenceness, provides a member typedef type that names U&; otherwise, provides a member typedef type that names std::decay_t<T>.The behavior of a program that adds specializations for any of the templates described on this page is undefined.
Member types
| Name | Definition | 
  type
 | 
 1)  2)   | 
Helper types
|   template<class T> using unwrap_reference_t = typename unwrap_reference<T>::type;  | 
(1) | (since C++20) | 
|   template<class T> using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type;  | 
(2) | (since C++20) | 
Possible implementation
template <class T> struct unwrap_reference { using type = T; }; template <class U> struct unwrap_reference<std::reference_wrapper<U>> { using type = U&; }; template< class T > struct unwrap_ref_decay : std::unwrap_reference<std::decay_t<T>> {};  | 
Notes
std::unwrap_ref_decay performs the same transformation as used by std::make_pair and std::make_tuple.
| Feature-test macro: | __cpp_lib_unwrap_ref | 
Example
Run this code
#include <cassert> #include <iostream> #include <functional> #include <type_traits> int main() { static_assert(std::is_same_v<std::unwrap_reference_t<int>, int>); static_assert(std::is_same_v<std::unwrap_reference_t<const int>, const int>); static_assert(std::is_same_v<std::unwrap_reference_t<int&>, int&>); static_assert(std::is_same_v<std::unwrap_reference_t<int&&>, int&&>); static_assert(std::is_same_v<std::unwrap_reference_t<int*>, int*>); { using T = std::reference_wrapper<int>; using X = std::unwrap_reference_t<T>; static_assert(std::is_same_v<X, int&>); } { using T = std::reference_wrapper<int&>; using X = std::unwrap_reference_t<T>; static_assert(std::is_same_v<X, int&>); } static_assert(std::is_same_v<std::unwrap_ref_decay_t<int>, int>); static_assert(std::is_same_v<std::unwrap_ref_decay_t<const int>, int>); static_assert(std::is_same_v<std::unwrap_ref_decay_t<const int&>, int>); { using T = std::reference_wrapper<int&&>; using X = std::unwrap_ref_decay_t<T>; static_assert(std::is_same_v<X, int&>); } { auto reset = []<typename T>(T&& z) { // x = 0; // Error: does not work if T is reference_wrapper<> // converts T&& into T& for ordinary types // converts T&& into U& for reference_wrapper<U> decltype(auto) r = std::unwrap_reference_t<T>(z); std::cout << "r: " << r << '\n'; r = 0; // OK, r has reference type }; int x = 1; reset(x); assert(x == 0); int y = 2; reset(std::ref(y)); assert(y == 0); } }
Output:
r: 1 r: 2
See also
|    (C++11)  | 
   CopyConstructible and CopyAssignable reference wrapper   (class template)  | 
   creates a pair object of type, defined by the argument types (function template)  | |
|    (C++11)  | 
   creates a tuple object of the type defined by the argument types  (function template)  |