Move constructors

From cppreference.com
< cpp‎ | language
 
 
C++ language
General topics
Flow control
Conditional execution statements
if
Iteration statements (loops)
for
range-for (C++11)
Jump statements
Functions
Function declaration
Lambda function expression
inline specifier
Dynamic exception specifications (until C++20)
noexcept specifier (C++11)
Exceptions
Namespaces
Types
Specifiers
decltype (C++11)
auto (C++11)
alignas (C++11)
Storage duration specifiers
Initialization
Expressions
Alternative representations
Literals
Boolean - Integer - Floating-point
Character - String - nullptr (C++11)
User-defined (C++11)
Utilities
Attributes (C++11)
Types
typedef declaration
Type alias declaration (C++11)
Casts
Implicit conversions - Explicit conversions
static_cast - dynamic_cast
const_cast - reinterpret_cast
Memory allocation
Classes
Class-specific function properties
explicit (C++11)
static
Special member functions
Default constructor
Copy constructor
Move constructor (C++11)
Templates
Miscellaneous
 
 

A move constructor of class T is a non-template constructor whose first parameter is T&&, const T&&, volatile T&&, or const volatile T&&, and either there are no other parameters, or the rest of the parameters all have default values.

Syntax

class-name ( class-name && ) (1) (since C++11)
class-name ( class-name && ) = default; (2) (since C++11)
class-name ( class-name && ) = delete; (3) (since C++11)

Where class-name must name the current class (or current instantiation of a class template), or, when declared at namespace scope or in a friend declaration, it must be a qualified class name.

Explanation

1) Typical declaration of a move constructor.
2) Forcing a move constructor to be generated by the compiler.
3) Avoiding implicit move constructor.

The move constructor is typically called when an object is initialized (by direct-initialization or copy-initialization) from rvalue (xvalue or prvalue) (until C++17)xvalue (since C++17) of the same type, including

  • initialization: T a = std::move(b); or T a(std::move(b));, where b is of type T;
  • function argument passing: f(std::move(a));, where a is of type T and f is void f(T t);
  • function return: return a; inside a function such as T f(), where a is of type T which has a move constructor.

When the initializer is a prvalue, the move constructor call is often optimized out (until C++17)never made (since C++17), see copy elision.

Move constructors typically "steal" the resources held by the argument (e.g. pointers to dynamically-allocated objects, file descriptors, TCP sockets, I/O streams, running threads, etc.) rather than make copies of them, and leave the argument in some valid but otherwise indeterminate state. For example, moving from a std::string or from a std::vector may result in the argument being left empty. However, this behavior should not be relied upon. For some types, such as std::unique_ptr, the moved-from state is fully specified.

Implicitly-declared move constructor

If no user-defined move constructors are provided for a class type (struct, class, or union), and all of the following is true:

then the compiler will declare a move constructor as a non-explicit inline public member of its class with the signature T::T(T&&).

A class can have multiple move constructors, e.g. both T::T(const T&&) and T::T(T&&). If some user-defined move constructors are present, the user may still force the generation of the implicitly declared move constructor with the keyword default.

The implicitly-declared (or defaulted on its first declaration) move constructor has an exception specification as described in dynamic exception specification (until C++17)noexcept specification (since C++17)

Deleted implicitly-declared move constructor

The implicitly-declared or defaulted move constructor for class T is defined as deleted if any of the following is true:

  • T has non-static data members that cannot be moved (have deleted, inaccessible, or ambiguous move constructors);
  • T has direct or virtual base class that cannot be moved (has deleted, inaccessible, or ambiguous move constructors);
  • T has direct or virtual base class or a non-static data member with a deleted or inaccessible destructor;
  • T is a union-like class and has a variant member with non-trivial move constructor.

A defaulted move constructor that is deleted is ignored by overload resolution (otherwise it would prevent copy-initialization from rvalue).

Trivial move constructor

The move constructor for class T is trivial if all of the following is true:

  • it is not user-provided (meaning, it is implicitly-defined or defaulted);
  • T has no virtual member functions;
  • T has no virtual base classes;
  • the move constructor selected for every direct base of T is trivial;
  • the move constructor selected for every non-static class type (or array of class type) member of T is trivial.

A trivial move constructor is a constructor that performs the same action as the trivial copy constructor, that is, makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially movable.

Eligible move constructor

A move constructor is eligible if it is not deleted.

(until C++20)

A move constructor is eligible if

(since C++20)

Triviality of eligible move constructors determines whether the class is an implicit-lifetime type, and whether the class is a trivially copyable type.

Implicitly-defined move constructor

If the implicitly-declared move constructor is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used or needed for constant evaluation. For union types, the implicitly-defined move constructor copies the object representation (as by std::memmove). For non-union class types (class and struct), the move constructor performs full member-wise move of the object's bases and non-static members, in their initialization order, using direct initialization with an xvalue argument. If this satisfies the requirements of a constexpr constructor, the generated move constructor is constexpr.

Notes

To make the strong exception guarantee possible, user-defined move constructors should not throw exceptions. For example, std::vector relies on std::move_if_noexcept to choose between move and copy when the elements need to be relocated.

If both copy and move constructors are provided and no other constructors are viable, overload resolution selects the move constructor if the argument is an rvalue of the same type (an xvalue such as the result of std::move or a prvalue such as a nameless temporary (until C++17)), and selects the copy constructor if the argument is an lvalue (named object or a function/operator returning lvalue reference). If only the copy constructor is provided, all argument categories select it (as long as it takes a reference to const, since rvalues can bind to const references), which makes copying the fallback for moving, when moving is unavailable.

A constructor is called a 'move constructor' when it takes an rvalue reference as a parameter. It is not obligated to move anything, the class is not required to have a resource to be moved and a 'move constructor' may not be able to move a resource as in the allowable (but maybe not sensible) case where the parameter is a const rvalue reference (const T&&).

Example

#include <string>
#include <iostream>
#include <iomanip>
#include <utility>
 
struct A
{
    std::string s;
    int k;
 
    A() : s("test"), k(-1) {}
    A(const A& o) : s(o.s), k(o.k) { std::cout << "move failed!\n"; }
    A(A&& o) noexcept :
        s(std::move(o.s)),       // explicit move of a member of class type
        k(std::exchange(o.k, 0)) // explicit move of a member of non-class type
    {}
};
 
A f(A a)
{
    return a;
}
 
struct B : A
{
    std::string s2;
    int n;
    // implicit move constructor B::(B&&)
    // calls A's move constructor
    // calls s2's move constructor
    // and makes a bitwise copy of n
};
 
struct C : B
{
    ~C() {} // destructor prevents implicit move constructor C::(C&&)
};
 
struct D : B
{
    D() {}
    ~D() {}           // destructor would prevent implicit move constructor D::(D&&)
    D(D&&) = default; // forces a move constructor anyway
};
 
int main()
{
    std::cout << "Trying to move A\n";
    A a1 = f(A()); // return by value move-constructs the target
                   // from the function parameter
    std::cout << "Before move, a1.s = " << std::quoted(a1.s)
        << " a1.k = " << a1.k << '\n';
    A a2 = std::move(a1); // move-constructs from xvalue
    std::cout << "After move, a1.s = " << std::quoted(a1.s)
        << " a1.k = " << a1.k << '\n';
 
    std::cout << "Trying to move B\n";
    B b1;
    std::cout << "Before move, b1.s = " << std::quoted(b1.s) << "\n";
    B b2 = std::move(b1); // calls implicit move constructor
    std::cout << "After move, b1.s = " << std::quoted(b1.s) << "\n";
 
    std::cout << "Trying to move C\n";
    C c1;
    C c2 = std::move(c1); // calls copy constructor
 
    std::cout << "Trying to move D\n";
    D d1;
    D d2 = std::move(d1);
}

Output:

Trying to move A
Before move, a1.s = "test" a1.k = -1
After move, a1.s = "" a1.k = 0
Trying to move B
Before move, b1.s = "test"
After move, b1.s = ""
Trying to move C
move failed!
Trying to move D

Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
CWG 1402 C++11 a defaulted move constructor that would call
a non-trivial copy constructor was defined as
deleted; a defaulted move constructor that is
deleted still participated in overload resolution
allows call to such copy
constructor; made ignored
in overload resolution
CWG 1491 C++11 a defaulted move constructor of a class with a non-static data
member of rvalue reference type was defined as deleted
not deleted in this case
CWG 2094 C++11 a volatile subobject made a defaulted
move constructor non-trivial (CWG 496)
triviality not affected

See also