std::cyl_neumann, std::cyl_neumannf, std::cyl_neumannl
From cppreference.com
< cpp | numeric | special functions
Defined in header <cmath>
|
||
double cyl_neumann( double ν, double x ); float cyl_neumannf( float ν, float x ); |
(1) | (since C++17) |
Promoted cyl_neumann( Arithmetic ν, Arithmetic x ); |
(2) | (since C++17) |
1) Computes the cylindrical Neumann function (also known as Bessel function of the second kind or Weber function) of
ν
and x
.2) A set of overloads or a function template for all combinations of arguments of arithmetic type not covered by (1). If any argument has integral type, it is cast to double. If any argument is long double, then the return type
Promoted
is also long double, otherwise the return type is always double.Parameters
ν | - | the order of the function |
x | - | the argument of the function |
Return value
If no errors occur, value of the cylindrical Neumann function (Bessel function of the second kind) ofν
and x
, is returned, that is Nν(x) =
J ν(x)cos(νπ)-J -ν(x) |
sin(νπ) |
ν(x) is std::cyl_bessel_j(ν,x)) for x≥0 and non-integer ν; for integer ν a limit is used.
Error handling
Errors may be reported as specified in math_errhandling:
- If the argument is NaN, NaN is returned and domain error is not reported
- If ν>=128, the behavior is implementation-defined
Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math
Example
Run this code
#include <cassert> #include <cmath> #include <iostream> #include <numbers> const double π = std::numbers::pi; // or std::acos(-1) in pre C++20 // To calculate the cylindrical Neumann function via cylindrical Bessel function of the // first kind we have to implement the J₋ᵥ, because the direct invocation of the // std::cyl_bessel_j(ν,x), per formula above, for negative ν raises 'std::domain_error': // Bad argument in __cyl_bessel_j. double J₋ᵥ (double ν, double x) { return std::cos(-ν*π) * std::cyl_bessel_j(-ν,x) -std::sin(-ν*π) * std::cyl_neumann(-ν,x); } double J₊ᵥ (double ν, double x) { return std::cyl_bessel_j(ν,x); } double Jᵥ (double ν, double x) { return ν < 0.0 ? J₋ᵥ(ν,x) : J₊ᵥ(ν,x); } int main() { std::cout << "spot checks for ν == 0.5\n" << std::fixed << std::showpos; double ν = 0.5; for (double x = 0.0; x <= 2.0; x += 0.333) { const double n = std::cyl_neumann(ν, x); const double j = (Jᵥ(ν, x)*std::cos(ν*π) - Jᵥ(-ν, x)) / std::sin(ν*π); std::cout << "N_.5(" << x << ") = " << n << ", calculated via J = " << j << '\n'; assert(n == j); } }
Output:
spot checks for ν == 0.5 N_.5(+0.000000) = -inf, calculated via J = -inf N_.5(+0.333000) = -1.306713, calculated via J = -1.306713 N_.5(+0.666000) = -0.768760, calculated via J = -0.768760 N_.5(+0.999000) = -0.431986, calculated via J = -0.431986 N_.5(+1.332000) = -0.163524, calculated via J = -0.163524 N_.5(+1.665000) = +0.058165, calculated via J = +0.058165 N_.5(+1.998000) = +0.233876, calculated via J = +0.233876
See also
(C++17)(C++17)(C++17) |
regular modified cylindrical Bessel functions (function) |
(C++17)(C++17)(C++17) |
cylindrical Bessel functions (of the first kind) (function) |
(C++17)(C++17)(C++17) |
irregular modified cylindrical Bessel functions (function) |
External links
Weisstein, Eric W. "Bessel Function of the Second Kind." From MathWorld — A Wolfram Web Resource.