std::exp(std::complex)
|   Defined in header  <complex>
  | 
||
|   template< class T >  complex<T> exp( const complex<T>& z );  | 
||
Compute base-e exponential of z, that is e (Euler's number, 2.7182818) raised to the z power.
Parameters
| z | - | complex value | 
Return value
If no errors occur, e raised to the power of z, ez
, is returned.
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- std::exp(std::conj(z)) == std::conj(std::exp(z))
 -  If 
zis(±0,+0), the result is(1,+0) -  If 
zis(x,+∞)(for any finite x), the result is(NaN,NaN)and FE_INVALID is raised. -  If 
zis(x,NaN)(for any finite x), the result is(NaN,NaN)and FE_INVALID may be raised. -  If 
zis(+∞,+0), the result is(+∞,+0) -  If 
zis(-∞,y)(for any finite y), the result is+0cis(y) -  If 
zis(+∞,y)(for any finite nonzero y), the result is+∞cis(y) -  If 
zis(-∞,+∞), the result is(±0,±0)(signs are unspecified) -  If 
zis(+∞,+∞), the result is(±∞,NaN)and FE_INVALID is raised (the sign of the real part is unspecified) -  If 
zis(-∞,NaN), the result is(±0,±0)(signs are unspecified) -  If 
zis(+∞,NaN), the result is(±∞,NaN)(the sign of the real part is unspecified) -  If 
zis(NaN,+0), the result is(NaN,+0) -  If 
zis(NaN,y)(for any nonzero y), the result is(NaN,NaN)and FE_INVALID may be raised -  If 
zis(NaN,NaN), the result is(NaN,NaN) 
where cis(y) is cos(y) + i sin(y)
Notes
The complex exponential function ez
 for z = x+iy equals ex
 cis(y), or, ex
 (cos(y) + i sin(y))
The exponential function is an entire function in the complex plane and has no branch cuts.
The following have equivalent results when the real part is 0:
- std::exp(std::complex<float>(0, theta))
 - std::complex<float>(cosf(theta), sinf(theta))
 - std::polar(1.f, theta)
 
In this case exp can be about 4.5x slower. One of the other forms should be used instead of using exp with a literal 0 component. There is no benefit in trying to avoid exp with a runtime check of z.real() == 0 though.
Example
#include <complex> #include <iostream> int main() { const double pi = std::acos(-1); const std::complex<double> i(0, 1); std::cout << std::fixed << " exp(i*pi) = " << std::exp(i * pi) << '\n'; }
Output:
exp(i*pi) = (-1.000000,0.000000)
See also
|    complex natural logarithm with the branch cuts along the negative real axis  (function template)  | |
|    (C++11)(C++11)  | 
   returns e raised to the given power (ex)   (function)  | 
|    applies the function std::exp to each element of valarray  (function template)  | |
|    constructs a complex number from magnitude and phase angle   (function template)  |