std::polar(std::complex)
From cppreference.com
Defined in header <complex>
|
||
template< class T > complex<T> polar( const T& r, const T& theta = T() ); |
||
Returns a complex number with magnitude r
and phase angle theta
.
The behavior is undefined if r
is negative or NaN, or if theta
is infinite.
Parameters
r | - | magnitude |
theta | - | phase angle |
Return value
a complex number determined by r
and theta
Notes
std::polar(r, theta) is equivalent to any of the following expressions:
- r * std::exp(theta * 1i)
- r * (cos(theta) + sin(theta) * 1i)
- std::complex(r * cos(theta), r * sin(theta)).
Using polar instead of exp can be about 4.5x faster in vectorized loops.
Example
Run this code
#include <cmath> #include <complex> #include <iomanip> #include <iostream> #include <numbers> using namespace std::complex_literals; int main() { constexpr auto π_2 {std::numbers::pi / 2.0}; constexpr auto mag {1.0}; std::cout << std::fixed << std::showpos << std::setprecision(1) << " θ: │ polar: │ exp: │ complex: │ trig:\n"; for (int n{}; n != 4; ++n) { const auto θ {n * π_2}; std::cout << std::setw(4) << 90 * n << "° │ " << std::polar(mag, θ) << " │ " << mag * std::exp(θ * 1.0i) << " │ " << std::complex(mag * cos(θ), mag * sin(θ)) << " │ " << mag * (cos(θ) + 1.0i * sin(θ)) << '\n'; } }
Output:
θ: │ polar: │ exp: │ complex: │ trig: +0° │ (+1.0,+0.0) │ (+1.0,+0.0) │ (+1.0,+0.0) │ (+1.0,+0.0) +90° │ (+0.0,+1.0) │ (+0.0,+1.0) │ (+0.0,+1.0) │ (+0.0,+1.0) +180° │ (-1.0,+0.0) │ (-1.0,+0.0) │ (-1.0,+0.0) │ (-1.0,+0.0) +270° │ (-0.0,-1.0) │ (-0.0,-1.0) │ (-0.0,-1.0) │ (-0.0,-1.0)
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 2459 | C++98 | behavior unclear for some inputs | made undefined |
LWG 2870 | C++98 | default value of parameter theta not dependent | made dependent |
See also
returns the magnitude of a complex number (function template) | |
returns the phase angle (function template) | |
complex base e exponential (function template) |