std::is_aggregate

From cppreference.com
< cpp‎ | types
 
 
Metaprogramming library
Type traits
Type categories
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Type properties
(C++11)
(C++11)
(C++14)
is_aggregate
(C++17)
(C++11)
(C++11)(until C++20)
(C++11)(deprecated in C++20)
(C++11)
Type trait constants
Metafunctions
(C++17)
Supported operations
Relationships and property queries
Type modifications
(C++11)(C++11)(C++11)
Type transformations
(C++11)(deprecated in C++23)
(C++11)(deprecated in C++23)
(C++11)
(C++11)
(C++17)

(C++11)(until C++20)(C++17)
Compile-time rational arithmetic
Compile-time integer sequences
 
Defined in header <type_traits>
template< class T >
struct is_aggregate;
(since C++17)

Checks if T is an aggregate type. The member constant value is equal to true if T is an aggregate type and false otherwise.

The behavior is undefined if std::remove_all_extents_t<T> is an incomplete type other than (possibly cv-qualified) void.

The behavior of a program that adds specializations for is_aggregate or is_aggregate_v is undefined.

Template parameters

T - a type to check

Helper variable template

template< class T >
inline constexpr bool is_aggregate_v = is_aggregate<T>::value;
(since C++17)

Inherited from std::integral_constant

Member constants

value
[static]
true if T is an aggregate type , false otherwise
(public static member constant)

Member functions

operator bool
converts the object to bool, returns value
(public member function)
operator()
(C++14)
returns value
(public member function)

Member types

Type Definition
value_type bool
type std::integral_constant<bool, value>

Notes

Feature-test macro: __cpp_lib_is_aggregate

Example

#include <type_traits>
#include <new>
#include <utility>
 
// constructs a T at the uninitialized memory pointed to by p
// using list-initialization for aggregates and non-list initialization otherwise
template<class T, class... Args>
T* construct(T* p, Args&&... args) {
    if constexpr(std::is_aggregate_v<T>) {
        return ::new (static_cast<void*>(p)) T{std::forward<Args>(args)...};
    }
    else {
        return ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
    }
}
 
struct A { int x, y; };
struct B { B(int, const char*) { } };
 
int main() {
    std::aligned_union_t<1, A, B> storage;
    [[maybe_unused]] A* a = construct(reinterpret_cast<A*>(&storage), 1, 2);
    [[maybe_unused]] B* b = construct(reinterpret_cast<B*>(&storage), 1, "hello");
}