std::extreme_value_distribution
From cppreference.com
                    
                                        
                    
                    
                                                            
                    |   Defined in header  <random>
  | 
||
|   template< class RealType = double > class extreme_value_distribution;  | 
(since C++11) | |
Produces random numbers according to the extreme value distribution (it is also known as Gumbel Type I, log-Weibull, Fisher-Tippett Type I):
- p(x;a,b) = 
exp⎛1 b 
⎜
⎝
- exp⎛a-x b 
⎜
⎝
⎞a-x b 
⎟
⎠⎞
⎟
⎠ 
std::extreme_value_distribution satisfies all requirements of RandomNumberDistribution
Template parameters
| RealType | - | The result type generated by the generator. The effect is undefined if this is not one of float, double, or long double. | 
Member types
| Member type | Definition | 
  result_type
 | 
RealType | 
  param_type(C++11)
 | 
the type of the parameter set, see RandomNumberDistribution. | 
Member functions
|    (C++11)  | 
  constructs new distribution  (public member function)  | 
|    (C++11)  | 
   resets the internal state of the distribution   (public member function)  | 
 Generation | |
|    (C++11)  | 
   generates the next random number in the distribution   (public member function)  | 
 Characteristics | |
|    returns the distribution parameters   (public member function)  | |
|    (C++11)  | 
   gets or sets the distribution parameter object   (public member function)  | 
|    (C++11)  | 
   returns the minimum potentially generated value  (public member function)  | 
|    (C++11)  | 
   returns the maximum potentially generated value   (public member function)  | 
Non-member functions
|    (C++11)(C++11)(removed in C++20)  | 
   compares two distribution objects   (function)  | 
|    (C++11)  | 
   performs stream input and output on pseudo-random number distribution   (function template)  | 
Example
Run this code
#include <random> #include <map> #include <iomanip> #include <algorithm> #include <iostream> #include <vector> #include <cmath> template <int Height = 5, int BarWidth = 1, int Padding = 1, int Offset = 0, class Seq> void draw_vbars(Seq&& s, const bool DrawMinMax = true) { static_assert((Height > 0) && (BarWidth > 0) && (Padding >= 0) && (Offset >= 0)); auto cout_n = [](auto&& v, int n = 1) { while (n-- > 0) std::cout << v; }; const auto [min, max] = std::minmax_element(std::cbegin(s), std::cend(s)); std::vector<std::div_t> qr; for (typedef decltype(*cbegin(s)) V; V e : s) qr.push_back(std::div(std::lerp(V(0), Height*8, (e - *min)/(*max - *min)), 8)); for (auto h{Height}; h-- > 0; cout_n('\n')) { cout_n(' ', Offset); for (auto dv : qr) { const auto q{dv.quot}, r{dv.rem}; unsigned char d[] { 0xe2, 0x96, 0x88, 0 }; // Full Block: '█' q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0; cout_n(d, BarWidth), cout_n(' ', Padding); } if (DrawMinMax && Height > 1) Height - 1 == h ? std::cout << "┬ " << *max: h ? std::cout << "│ " : std::cout << "┴ " << *min; } } int main() { std::random_device rd{}; std::mt19937 gen{rd()}; std::extreme_value_distribution<> d{-1.618f, 1.618f}; const int norm = 10'000; const float cutoff = 0.000'3f; std::map<int, int> hist{}; for(int n=0; n<norm; ++n) { ++hist[std::round(d(gen))]; } std::vector<float> bars; std::vector<int> indices; for(const auto& [n,p] : hist) { float x = p*(1.0f/norm); if (x > cutoff) { bars.push_back(x); indices.push_back(n); } } draw_vbars<8,4>(bars); for (int n : indices) { std::cout << " " << std::setw(2) << n << " "; } std::cout << '\n'; }
Possible output:
               ████ ▅▅▅▅                                                        ┬ 0.2186
               ████ ████                                                        │
          ▁▁▁▁ ████ ████ ▇▇▇▇                                                   │
          ████ ████ ████ ████                                                   │
          ████ ████ ████ ████ ▆▆▆▆                                              │
          ████ ████ ████ ████ ████ ▁▁▁▁                                         │
     ▄▄▄▄ ████ ████ ████ ████ ████ ████ ▃▃▃▃                                    │
▁▁▁▁ ████ ████ ████ ████ ████ ████ ████ ████ ▆▆▆▆ ▃▃▃▃ ▂▂▂▂ ▁▁▁▁ ▁▁▁▁ ▁▁▁▁ ▁▁▁▁ ┴ 0.0005
 -5   -4   -3   -2   -1    0    1    2    3    4    5    6    7    8    9   10External links
Weisstein, Eric W. "Extreme Value Distribution." From MathWorld--A Wolfram Web Resource.