std::student_t_distribution
From cppreference.com
                    
                                        
                    
                    
                                                            
                    |   Defined in header  <random>
  | 
||
|   template< class RealType = double > class student_t_distribution;  | 
(since C++11) | |
Produces random floating-point values x, distributed according to probability density function:
- p(x|n) = 
·1 √nπ 
· ⎛Γ( 
)n+1 2 Γ( 
)n 2 
⎜
⎝1+
⎞x2 n 
⎟
⎠ -n+1 2 
 
where n is known as the number of degrees of freedom. This distribution is used when estimating the mean of an unknown normally distributed value given n+1 independent measurements, each with additive errors of unknown standard deviation, as in physical measurements. Or, alternatively, when estimating the unknown mean of a normal distribution with unknown standard deviation, given n+1 samples.
std::student_t_distribution satisfies all requirements of RandomNumberDistribution
Template parameters
| RealType | - | The result type generated by the generator. The effect is undefined if this is not one of float, double, or long double. | 
Member types
| Member type | Definition | 
  result_type
 | 
RealType | 
  param_type(C++11)
 | 
the type of the parameter set, see RandomNumberDistribution. | 
Member functions
|    (C++11)  | 
  constructs new distribution  (public member function)  | 
|    (C++11)  | 
   resets the internal state of the distribution   (public member function)  | 
 Generation | |
|    (C++11)  | 
   generates the next random number in the distribution   (public member function)  | 
 Characteristics | |
|    returns the n distribution parameter (degrees of freedom)   (public member function)  | |
|    (C++11)  | 
   gets or sets the distribution parameter object   (public member function)  | 
|    (C++11)  | 
   returns the minimum potentially generated value  (public member function)  | 
|    (C++11)  | 
   returns the maximum potentially generated value   (public member function)  | 
Non-member functions
|    (C++11)(C++11)(removed in C++20)  | 
   compares two distribution objects   (function)  | 
|    (C++11)  | 
   performs stream input and output on pseudo-random number distribution   (function template)  | 
Example
Run this code
#include <map> #include <random> #include <iomanip> #include <algorithm> #include <iostream> #include <vector> #include <cmath> template <int Height = 5, int BarWidth = 1, int Padding = 1, int Offset = 0, class Seq> void draw_vbars(Seq&& s, const bool DrawMinMax = true) { static_assert((Height > 0) && (BarWidth > 0) && (Padding >= 0) && (Offset >= 0)); auto cout_n = [](auto&& v, int n = 1) { while (n-- > 0) std::cout << v; }; const auto [min, max] = std::minmax_element(std::cbegin(s), std::cend(s)); std::vector<std::div_t> qr; for (typedef decltype(*cbegin(s)) V; V e : s) qr.push_back(std::div(std::lerp(V(0), Height*8, (e - *min)/(*max - *min)), 8)); for (auto h{Height}; h-- > 0; cout_n('\n')) { cout_n(' ', Offset); for (auto dv : qr) { const auto q{dv.quot}, r{dv.rem}; unsigned char d[] { 0xe2, 0x96, 0x88, 0 }; // Full Block: '█' q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0; cout_n(d, BarWidth), cout_n(' ', Padding); } if (DrawMinMax && Height > 1) Height - 1 == h ? std::cout << "┬ " << *max: h ? std::cout << "│ " : std::cout << "┴ " << *min; } } int main() { std::random_device rd{}; std::mt19937 gen{rd()}; std::student_t_distribution<> d{10.0f}; const int norm = 10'000; const float cutoff = 0.000'3f; std::map<int, int> hist{}; for(int n=0; n<norm; ++n) { ++hist[std::round(d(gen))]; } std::vector<float> bars; std::vector<int> indices; for (const auto& [n, p] : hist) { if (float x = p * (1.0f / norm); cutoff < x) { bars.push_back(x); indices.push_back(n); } } draw_vbars<8,5>(bars); for (int n : indices) { std::cout << " " << std::setw(2) << n << " "; } std::cout << '\n'; }
Possible output:
                        █████                               ┬ 0.3753
                        █████                               │
                  ▁▁▁▁▁ █████                               │
                  █████ █████ ▆▆▆▆▆                         │
                  █████ █████ █████                         │
                  █████ █████ █████                         │
            ▄▄▄▄▄ █████ █████ █████ ▄▄▄▄▄                   │
▁▁▁▁▁ ▃▃▃▃▃ █████ █████ █████ █████ █████ ▃▃▃▃▃ ▁▁▁▁▁ ▁▁▁▁▁ ┴ 0.0049
 -4    -3    -2    -1     0     1     2     3     4     5External links
Weisstein, Eric W. "Student's t-Distribution." From MathWorld--A Wolfram Web Resource.