std::div, std::ldiv, std::lldiv
Defined in header <cstdlib>
|
||
std::div_t div( int x, int y ); |
(1) | (constexpr since C++23) |
std::ldiv_t div( long x, long y ); |
(2) | (constexpr since C++23) |
std::lldiv_t div( long long x, long long y ); |
(3) | (since C++11) (constexpr since C++23) |
std::ldiv_t ldiv( long x, long y ); |
(4) | (constexpr since C++23) |
std::lldiv_t lldiv( long long x, long long y ); |
(5) | (since C++11) (constexpr since C++23) |
Defined in header <cinttypes>
|
||
std::imaxdiv_t div( std::intmax_t x, std::intmax_t y ); |
(6) | (since C++11) |
std::imaxdiv_t imaxdiv( std::intmax_t x, std::intmax_t y ); |
(7) | (since C++11) |
Computes both the quotient and the remainder of the division of the numerator x
by the denominator y
.
Overload of |
(since C++11) |
The quotient is the algebraic quotient with any fractional part discarded (truncated towards zero). The remainder is such that quot * y + rem == x. |
(until C++11) |
The quotient is the result of the expression x/y. The remainder is the result of the expression x%y. |
(since C++11) |
Parameters
x, y | - | integer values |
Return value
If both the remainder and the quotient can be represented as objects of the corresponding type (int, long, long long, std::imaxdiv_t
, respectively), returns both as an object of type std::div_t
, std::ldiv_t
, std::lldiv_t
, std::imaxdiv_t
defined as follows:
std::div_t
struct div_t { int quot; int rem; };
or
struct div_t { int rem; int quot; };
std::ldiv_t
struct ldiv_t { long quot; long rem; };
or
struct ldiv_t { long rem; long quot; };
std::lldiv_t
struct lldiv_t { long long quot; long long rem; };
or
struct lldiv_t { long long rem; long long quot; };
std::imaxdiv_t
struct imaxdiv_t { std::intmax_t quot; std::intmax_t rem; };
or
struct imaxdiv_t { std::intmax_t rem; std::intmax_t quot; };
If either the remainder or the quotient cannot be represented, the behavior is undefined.
Notes
Until C++11, the rounding direction of the quotient and the sign of the remainder in the built-in division and remainder operators was implementation-defined if either of the operands was negative, but it was well-defined in std::div
.
On many platforms, a single CPU instruction obtains both the quotient and the remainder, and this function may leverage that, although compilers are generally able to merge nearby / and % where suitable.
Example
#include <string> #include <cmath> #include <cstdlib> #include <iostream> #include <sstream> #include <cassert> std::string euclidean_division_string(int dividend, int divisor) { auto dv = std::div(dividend, divisor); assert(dividend == divisor * dv.quot + dv.rem); assert(dv.quot == dividend / divisor); assert(dv.rem == dividend % divisor); return (std::ostringstream() << std::showpos << dividend << " = " << divisor << " * (" << dv.quot << ") " << std::showpos << dv.rem).str(); } std::string itoa(int n, int radix /*[2..16]*/) { std::string buf; std::div_t dv{}; dv.quot = n; do { dv = std::div(dv.quot, radix); buf += "0123456789abcdef"[std::abs(dv.rem)]; // string literals are arrays } while(dv.quot); if (n < 0) buf += '-'; return {buf.rbegin(), buf.rend()}; } int main() { std::cout << euclidean_division_string(369, 10) << '\n' << euclidean_division_string(369, -10) << '\n' << euclidean_division_string(-369, 10) << '\n' << euclidean_division_string(-369, -10) << "\n\n"; std::cout << itoa(12345, 10) << '\n' << itoa(-12345, 10) << '\n' << itoa(42, 2) << '\n' << itoa(65535, 16) << '\n'; }
Output:
+369 = +10 * (+36) +9 +369 = -10 * (-36) +9 -369 = +10 * (-36) -9 -369 = -10 * (+36) -9 12345 -12345 101010 ffff
See also
(C++11)(C++11) |
remainder of the floating point division operation (function) |
(C++11)(C++11)(C++11) |
signed remainder of the division operation (function) |
(C++11)(C++11)(C++11) |
signed remainder as well as the three last bits of the division operation (function) |