std::tan, std::tanf, std::tanl
|   Defined in header  <cmath>
  | 
||
| (1) | ||
|   float       tan ( float arg );  | 
||
|   float       tanf( float arg );  | 
(since C++11) | |
|   double      tan ( double arg );  | 
(2) | |
| (3) | ||
|   long double tan ( long double arg );  | 
||
|   long double tanl( long double arg );  | 
(since C++11) | |
|   double      tan ( IntegralType arg );  | 
(4) | (since C++11) | 
arg (measured in radians).Parameters
| arg | - | value representing angle in radians, of a floating-point or Integral type | 
Return value
If no errors occur, the tangent of arg (tan(arg)) is returned.
| 
 The result may have little or no significance if the magnitude of   | 
(until C++11) | 
If a domain error occurs, an implementation-defined value is returned (NaN where supported)
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- if the argument is ±0, it is returned unmodified
 - if the argument is ±∞, NaN is returned and FE_INVALID is raised
 - if the argument is NaN, NaN is returned
 
Notes
The case where the argument is infinite is not specified to be a domain error in C (to which C++ defers), but it is defined as a domain error in POSIX
The function has mathematical poles at π(1/2 + n); however no common floating-point representation is able to represent π/2 exactly, thus there is no value of the argument for which a pole error occurs.
Example
#include <iostream> #include <cmath> #include <cerrno> #include <cfenv> // #pragma STDC FENV_ACCESS ON const double pi = std::acos(-1); // or C++20's std::numbers::pi int main() { // typical usage std::cout << "tan(1*pi/4) = " << std::tan(1*pi/4) << '\n' // 45° << "tan(3*pi/4) = " << std::tan(3*pi/4) << '\n' // 135° << "tan(5*pi/4) = " << std::tan(5*pi/4) << '\n' // -135° << "tan(7*pi/4) = " << std::tan(7*pi/4) << '\n'; // -45° // special values std::cout << "tan(+0) = " << std::tan(0.0) << '\n' << "tan(-0) = " << std::tan(-0.0) << '\n'; // error handling std::feclearexcept(FE_ALL_EXCEPT); std::cout << "tan(INFINITY) = " << std::tan(INFINITY) << '\n'; if (std::fetestexcept(FE_INVALID)) std::cout << " FE_INVALID raised\n"; }
Possible output:
tan(1*pi/4) = 1
tan(3*pi/4) = -1
tan(5*pi/4) = 1
tan(7*pi/4) = -1
tan(+0) = 0
tan(-0) = -0
tan(INFINITY) = -nan
    FE_INVALID raisedSee also
|    (C++11)(C++11)  | 
   computes sine (sin(x))  (function)  | 
|    (C++11)(C++11)  | 
  computes cosine (cos(x))  (function)  | 
|    (C++11)(C++11)  | 
   computes arc tangent (arctan(x))  (function)  | 
|    computes tangent of a complex number (tan(z))    (function template)  | |
|    applies the function std::tan to each element of valarray   (function template)  |