std::hypot, std::hypotf, std::hypotl
Defined in header <cmath>
|
||
float hypot ( float x, float y ); float hypotf( float x, float y ); |
(1) | (since C++11) |
double hypot ( double x, double y ); |
(2) | (since C++11) |
long double hypot ( long double x, long double y ); long double hypotl( long double x, long double y ); |
(3) | (since C++11) |
Promoted hypot ( Arithmetic1 x, Arithmetic2 y ); |
(4) | (since C++11) |
float hypot ( float x, float y, float z ); |
(5) | (since C++17) |
double hypot ( double x, double y, double z ); |
(6) | (since C++17) |
long double hypot ( long double x, long double y, long double z ); |
(7) | (since C++17) |
Promoted hypot ( Arithmetic1 x, Arithmetic2 y, Arithmetic3 z ); |
(8) | (since C++17) |
x
and y
, without undue overflow or underflow at intermediate stages of the computation.x
, y
, and z
, without undue overflow or underflow at intermediate stages of the computation.The value computed by the two-argument version of this function is the length of the hypotenuse of a right-angled triangle with sides of length x
and y
, or the distance of the point (x,y)
from the origin (0,0)
, or the magnitude of a complex number x+iy
The value computed by the three-argument version of this function is the distance of the point (x,y,z)
from the origin (0,0,0)
.
Parameters
x, y, z | - | values of floating-point or integral types |
Return value
+y2
, is returned.
+y2
+z2
, is returned.
If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- hypot(x, y), hypot(y, x), and hypot(x, -y) are equivalent
- if one of the arguments is ±0,
hypot(x,y)
is equivalent to fabs called with the non-zero argument - if one of the arguments is ±∞,
hypot(x,y)
returns +∞ even if the other argument is NaN - otherwise, if any of the arguments is NaN, NaN is returned
Notes
Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD.
std::hypot(x, y) is equivalent to std::abs(std::complex<double>(x,y)).
POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).
Distance between two points
|
(since C++17) |
Example
#include <iostream> #include <cmath> #include <cerrno> #include <cfenv> #include <cfloat> #include <cstring> // #pragma STDC FENV_ACCESS ON int main() { // typical usage std::cout << "(1,1) cartesian is (" << std::hypot(1,1) << ',' << std::atan2(1,1) << ") polar\n"; struct Point3D { float x, y, z; } a{3.14,2.71,9.87}, b{1.14,5.71,3.87}; // C++17 has 3-argumnet hypot overload: std::cout << "distance(a,b) = " << std::hypot(a.x-b.x,a.y-b.y,a.z-b.z) << '\n'; // special values std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n'; if (errno == ERANGE) std::cout << " errno = ERANGE " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Output:
(1,1) cartesian is (1.41421,0.785398) polar distance(a,b) = 7 hypot(NAN,INFINITY) = inf hypot(DBL_MAX,DBL_MAX) = inf errno = ERANGE Numerical result out of range FE_OVERFLOW raised
See also
(C++11)(C++11) |
raises a number to the given power (xy) (function) |
(C++11)(C++11) |
computes square root (√x) (function) |
(C++11)(C++11)(C++11) |
computes cubic root (3√x) (function) |
returns the magnitude of a complex number (function template) |