std::nextafter, std::nextafterf, std::nextafterl, std::nexttoward, std::nexttowardf, std::nexttowardl
Defined in header <cmath>
|
||
float nextafter ( float from, float to ); |
(1) | (since C++11) (constexpr since C++23) |
float nextafterf( float from, float to ); |
(2) | (since C++11) (constexpr since C++23) |
double nextafter ( double from, double to ); |
(3) | (since C++11) (constexpr since C++23) |
long double nextafter ( long double from, long double to ); |
(4) | (since C++11) (constexpr since C++23) |
long double nextafterl( long double from, long double to ); |
(5) | (since C++11) (constexpr since C++23) |
Promoted nextafter ( Arithmetic1 from, Arithmetic2 to ); |
(6) | (since C++11) (constexpr since C++23) |
float nexttoward ( float from, long double to ); |
(7) | (since C++11) (constexpr since C++23) |
float nexttowardf( float from, long double to ); |
(8) | (since C++11) (constexpr since C++23) |
double nexttoward ( double from, long double to ); |
(9) | (since C++11) (constexpr since C++23) |
long double nexttoward ( long double from, long double to ); |
(10) | (since C++11) (constexpr since C++23) |
long double nexttowardl( long double from, long double to ); |
(11) | (since C++11) (constexpr since C++23) |
double nexttoward ( IntegralType from, long double to ); |
(12) | (since C++11) (constexpr since C++23) |
Returns the next representable value of from
in the direction of to
.
from
equals to
, to
is returned.from
equals to
, to
is returned, converted from long double to the return type of the function without loss of range or precision.Promoted
is also long double, otherwise the return type is always double.from
argument of any integral type. Equivalent to (9) (the argument is cast to double).Parameters
from, to | - | floating point values |
Return value
If no errors occur, the next representable value of from
in the direction of to
. is returned. If from
equals to
, then to
is returned.
If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF
, or ±HUGE_VALL
is returned (with the same sign as from
)
If a range error occurs due to underflow, the correct result is returned.
Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- if
from
is finite, but the expected result is an infinity, raises FE_INEXACT and FE_OVERFLOW - if
from
does not equalto
and the result is subnormal or zero, raises FE_INEXACT and FE_UNDERFLOW - in any case, the returned value is independent of the current rounding mode
- if either
from
orto
is NaN, NaN is returned
Notes
POSIX specifies that the overflow and the underflow conditions are range errors (errno may be set).
IEC 60559 recommends that from
is returned whenever from == to. These functions return to
instead, which makes the behavior around zero consistent: std::nextafter(-0.0, +0.0)
returns +0.0 and std::nextafter(+0.0, -0.0)
returns -0.0.
nextafter
is typically implemented by manipulation of IEEE representation (glibc, musl).
Example
#include <cfenv> #include <cfloat> #include <cmath> #include <concepts> #include <iomanip> #include <iostream> int main() { float from1 = 0, to1 = std::nextafter(from1, 1.f); std::cout << "The next representable float after " << std::setprecision(20) << from1 << " is " << to1 << std::hexfloat << " (" << to1 << ")\n" << std::defaultfloat; float from2 = 1, to2 = std::nextafter(from2, 2.f); std::cout << "The next representable float after " << from2 << " is " << to2 << std::hexfloat << " (" << to2 << ")\n" << std::defaultfloat; double from3 = std::nextafter(0.1, 0), to3 = 0.1; std::cout << "The number 0.1 lies between two valid doubles:\n" << std::setprecision(56) << " " << from3 << std::hexfloat << " (" << from3 << ')' << std::defaultfloat << "\nand " << to3 << std::hexfloat << " (" << to3 << ")\n" << std::defaultfloat << std::setprecision(20); std::cout << "\nDifference between nextafter and nexttoward:\n"; long double dir = std::nextafter(from1, 1.0L); // first subnormal long double float x = std::nextafter(from1, dir); // first converts dir to float, giving 0 std::cout << "With nextafter, next float after " << from1 << " is " << x << '\n'; x = std::nexttoward(from1, dir); std::cout << "With nexttoward, next float after " << from1 << " is " << x << '\n'; std::cout << "\nSpecial values:\n"; { // #pragma STDC FENV_ACCESS ON std::feclearexcept(FE_ALL_EXCEPT); double from4 = DBL_MAX, to4 = std::nextafter(from4, INFINITY); std::cout << "The next representable double after " << std::setprecision(6) << from4 << std::hexfloat << " (" << from4 << ')' << std::defaultfloat << " is " << to4 << std::hexfloat << " (" << to4 << ")\n" << std::defaultfloat; if(std::fetestexcept(FE_OVERFLOW)) std::cout << " raised FE_OVERFLOW\n"; if(std::fetestexcept(FE_INEXACT)) std::cout << " raised FE_INEXACT\n"; } // end FENV_ACCESS block float from5 = 0.0, to5 = std::nextafter(from5, -0.0); std::cout << "std::nextafter(+0.0, -0.0) gives " << std::fixed << to5 << '\n'; auto precision_loss_demo = []<std::floating_point Fp>(const auto rem, const Fp start) { std::cout << rem; for (Fp from = start, to, Δ; (Δ = (to = std::nextafter(from, +INFINITY)) - from) < Fp(10.0); from *= Fp(10.0)) std::cout << "nextafter(" << std::scientific << std::setprecision(0) << from << ", INF) gives " << std::fixed << std::setprecision(6) << to << "; Δ = " << Δ << '\n'; }; precision_loss_demo("\nPrecision loss demo for float:\n", 10.0f); precision_loss_demo("\nPrecision loss demo for double:\n", 10.0e9); precision_loss_demo("\nPrecision loss demo for long double:\n", 10.0e17L); }
Output:
The next representable float after 0 is 1.4012984643248170709e-45 (0x1p-149) The next representable float after 1 is 1.0000001192092895508 (0x1.000002p+0) The number 0.1 lies between two valid doubles: 0.09999999999999999167332731531132594682276248931884765625 (0x1.9999999999999p-4) and 0.1000000000000000055511151231257827021181583404541015625 (0x1.999999999999ap-4) Difference between nextafter and nexttoward: With nextafter, next float after 0 is 0 With nexttoward, next float after 0 is 1.4012984643248170709e-45 Special values: The next representable double after 1.79769e+308 (0x1.fffffffffffffp+1023) is inf (inf) raised FE_OVERFLOW raised FE_INEXACT std::nextafter(+0.0, -0.0) gives -0.000000 Precision loss demo for float: nextafter(1e+01, INF) gives 10.000001; Δ = 0.000001 nextafter(1e+02, INF) gives 100.000008; Δ = 0.000008 nextafter(1e+03, INF) gives 1000.000061; Δ = 0.000061 nextafter(1e+04, INF) gives 10000.000977; Δ = 0.000977 nextafter(1e+05, INF) gives 100000.007812; Δ = 0.007812 nextafter(1e+06, INF) gives 1000000.062500; Δ = 0.062500 nextafter(1e+07, INF) gives 10000001.000000; Δ = 1.000000 nextafter(1e+08, INF) gives 100000008.000000; Δ = 8.000000 Precision loss demo for double: nextafter(1e+10, INF) gives 10000000000.000002; Δ = 0.000002 nextafter(1e+11, INF) gives 100000000000.000015; Δ = 0.000015 nextafter(1e+12, INF) gives 1000000000000.000122; Δ = 0.000122 nextafter(1e+13, INF) gives 10000000000000.001953; Δ = 0.001953 nextafter(1e+14, INF) gives 100000000000000.015625; Δ = 0.015625 nextafter(1e+15, INF) gives 1000000000000000.125000; Δ = 0.125000 nextafter(1e+16, INF) gives 10000000000000002.000000; Δ = 2.000000 Precision loss demo for long double: nextafter(1e+18, INF) gives 1000000000000000000.062500; Δ = 0.062500 nextafter(1e+19, INF) gives 10000000000000000001.000000; Δ = 1.000000 nextafter(1e+20, INF) gives 100000000000000000008.000000; Δ = 8.000000