std::frexp, std::frexpf, std::frexpl

From cppreference.com
< cpp‎ | numeric‎ | math
 
 
 
Common mathematical functions
Functions
Basic operations
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Exponential functions
(C++11)
(C++11)
(C++11)
(C++11)
Power functions
(C++11)
(C++11)
Trigonometric and hyperbolic functions
(C++11)
(C++11)
(C++11)
Error and gamma functions
(C++11)
(C++11)
(C++11)
(C++11)
Nearest integer floating point operations
(C++11)(C++11)(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Floating point manipulation functions
(C++11)(C++11)
(C++11)
(C++11)
frexp
(C++11)(C++11)
(C++11)
Classification/Comparison
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Macro constants
(C++11)(C++11)(C++11)(C++11)(C++11)
 
Defined in header <cmath>
float       frexp ( float arg, int* exp );
(1) (constexpr since C++23)
float       frexpf( float arg, int* exp );
(2) (since C++11)
(constexpr since C++23)
double      frexp ( double arg, int* exp );
(3) (constexpr since C++23)
long double frexp ( long double arg, int* exp );
(4) (constexpr since C++23)
long double frexpl( long double arg, int* exp );
(5) (since C++11)
(constexpr since C++23)
double      frexp ( IntegralType arg, int* exp );
(6) (since C++11)
(constexpr since C++23)
1-5) Decomposes given floating point value arg into a normalized fraction and an integral power of two.
6) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (3) (the argument is cast to double).

Parameters

arg - floating point value
exp - pointer to integer value to store the exponent to

Return value

If arg is zero, returns zero and stores zero in *exp.

Otherwise (if arg is not zero), if no errors occur, returns the value x in the range (-1;-0.5], [0.5; 1) and stores an integer value in *exp such that x×2(*exp)
== arg

If the value to be stored in *exp is outside the range of int, the behavior is unspecified.

If arg is not a floating-point number, the behavior is unspecified.

Error handling

This function is not subject to any errors specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If arg is ±0, it is returned, unmodified, and 0 is stored in *exp.
  • If arg is ±∞, it is returned, and an unspecified value is stored in *exp.
  • If arg is NaN, NaN is returned, and an unspecified value is stored in *exp.
  • No floating-point exceptions are raised.
  • If FLT_RADIX is 2 (or a power of 2), the returned value is exact, the current rounding mode is ignored

Notes

On a binary system (where FLT_RADIX is 2), frexp may be implemented as

{
    *exp = (value == 0) ? 0 : (int)(1 + std::logb(value));
    return std::scalbn(value, -(*exp));
}

The function std::frexp, together with its dual, std::ldexp, can be used to manipulate the representation of a floating-point number without direct bit manipulations.

Example

Compares different floating-point decomposition functions

#include <iostream>
#include <cmath>
#include <limits>
 
int main()
{
    double f = 123.45;
    std::cout << "Given the number " << f << " or " << std::hexfloat
              << f << std::defaultfloat << " in hex,\n";
 
    double f3;
    double f2 = std::modf(f, &f3);
    std::cout << "modf() makes " << f3 << " + " << f2 << '\n';
 
    int i;
    f2 = std::frexp(f, &i);
    std::cout << "frexp() makes " << f2 << " * 2^" << i << '\n';
 
    i = std::ilogb(f);
    std::cout << "logb()/ilogb() make " << f/std::scalbn(1.0, i) << " * "
              << std::numeric_limits<double>::radix
              << "^" << std::ilogb(f) << '\n';
}

Possible output:

Given the number 123.45 or 0x1.edccccccccccdp+6 in hex,
modf() makes 123 + 0.45
frexp() makes 0.964453 * 2^7
logb()/ilogb() make 1.92891 * 2^6


See also

(C++11)(C++11)
multiplies a number by 2 raised to a power
(function)
(C++11)(C++11)(C++11)
extracts exponent of the number
(function)
(C++11)(C++11)(C++11)
extracts exponent of the number
(function)
(C++11)(C++11)
decomposes a number into integer and fractional parts
(function)