std::ranges::empty
Defined in header <ranges>
|
||
inline namespace /*unspecified*/ { inline constexpr auto empty = /*unspecified*/; |
(since C++20) (customization point object) |
|
Call signature |
||
template< class T > requires /* see below */ |
(since C++20) | |
Determines whether or not t
has any elements.
A call to ranges::empty
is expression-equivalent to:
- bool(t.empty()), if that expression is valid.
- Otherwise, (ranges::size(t) == 0), if that expression is valid.
- Otherwise, bool(ranges::begin(t) == ranges::end(t)), if that expression is valid and decltype(ranges::begin(t)) models std::forward_iterator.
In all other cases, a call to ranges::empty
is ill-formed, which can result in substitution failure when ranges::empty(t) appears in the immediate context of a template instantiation.
Expression-equivalent
Expression e is expression-equivalent to expression f, if
- e and f have the same effects, and
- either both are constant subexpressions or else neither is a constant subexpression, and
- either both are potentially-throwing or else neither is potentially-throwing (i.e. noexcept(e) == noexcept(f)).
Customization point objects
The name ranges::empty
denotes a customization point object, which is a const function object of a literal semiregular
class type. For exposition purposes, the cv-unqualified version of its type is denoted as __empty_fn
.
All instances of __empty_fn
are equal. The effects of invoking different instances of type __empty_fn
on the same arguments are equivalent, regardless of whether the expression denoting the instance is an lvalue or rvalue, and is const-qualified or not (however, a volatile-qualified instance is not required to be invocable). Thus, ranges::empty
can be copied freely and its copies can be used interchangeably.
Given a set of types Args...
, if std::declval<Args>()... meet the requirements for arguments to ranges::empty
above, __empty_fn
models
- std::invocable<__empty_fn, Args...>,
- std::invocable<const __empty_fn, Args...>,
- std::invocable<__empty_fn&, Args...>, and
- std::invocable<const __empty_fn&, Args...>.
Otherwise, no function call operator of __empty_fn
participates in overload resolution.
Example
#include <iostream> #include <ranges> #include <vector> template <std::ranges::input_range R> void print(char id, R&& r) { if (std::ranges::empty(r)) { std::cout << '\t' << id << ") Empty\n"; return; } std::cout << '\t' << id << ") Elements:"; for (const auto& element : r) { std::cout << ' ' << element; } std::cout << '\n'; } int main() { { auto v = std::vector<int>{1, 2, 3}; std::cout << "(1) ranges::empty uses std::vector::empty:\n"; print('a', v); v.clear(); print('b', v); } { std::cout << "(2) ranges::empty uses ranges::size(initializer_list):\n"; auto il = {7, 8, 9}; print('a', il); print('b', std::initializer_list<int>{}); } { std::cout << "(2) ranges::empty on a raw array uses ranges::size:\n"; int array[] = {4, 5, 6}; // array has a known bound print('a', array); } { struct Scanty : private std::vector<int> { using std::vector<int>::begin; using std::vector<int>::end; using std::vector<int>::push_back; // Note: both empty() and size() are hidden }; std::cout << "(3) calling ranges::empty on an object w/o empty() or size():\n"; Scanty y; print('a', y); y.push_back(42); print('b', y); } }
Output:
(1) ranges::empty uses std::vector::empty: a) Elements: 1 2 3 b) Empty (2) ranges::empty uses ranges::size(initializer_list): a) Elements: 7 8 9 b) Empty (2) ranges::empty on a raw array uses ranges::size: a) Elements: 4 5 6 (3) calling ranges::empty on an object w/o empty() or size(): a) Empty b) Elements: 42
See also
(C++17) |
checks whether the container is empty (function template) |