std::ranges::adjacent_find
Defined in header <algorithm>
|
||
Call signature |
||
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_binary_predicate< |
(1) | (since C++20) |
template< ranges::forward_range R, class Proj = std::identity, std::indirect_binary_predicate< |
(2) | (since C++20) |
Searches the range [first, last)
for two consecutive equal elements.
pred
(after projecting with the projection proj
).r
as the source range, as if using ranges::begin(r) as first
and ranges::end(r) as last
.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists may not be specified when calling any of them.
- None of them is visible to argument-dependent lookup.
- When one of them is found by normal unqualified lookup for the name to the left of the function-call operator, it inhibits argument-dependent lookup.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | the range of elements to examine |
r | - | the range of the elements to examine |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
An iterator to the first of the first pair of identical elements, that is, the first iterator it
such that bool(std::invoke(pred, std::invoke(proj1, *it), std::invoke(proj, *(it + 1)))) is true.
If no such elements are found, an iterator equal to last
is returned.
Complexity
Exactly min((result-first)+1, (last-first)-1)
applications of the predicate and projection where result
is the return value.
Possible implementation
struct adjacent_find_fn { template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_binary_predicate< std::projected<I, Proj>, std::projected<I, Proj>> Pred = ranges::equal_to > constexpr I operator()( I first, S last, Pred pred = {}, Proj proj = {} ) const { if (first == last) { return first; } auto next = ranges::next(first); for (; next != last; ++next, ++first) { if (std::invoke(pred, std::invoke(proj, *first), std::invoke(proj, *next))) { return first; } } return first; } template< ranges::forward_range R, class Proj = std::identity, std::indirect_binary_predicate< std::projected<ranges::iterator_t<R>, Proj>, std::projected<ranges::iterator_t<R>, Proj>> Pred = ranges::equal_to > constexpr ranges::borrowed_iterator_t<R> operator()( R&& r, Pred pred = {}, Proj proj = {} ) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr adjacent_find_fn adjacent_find; |
Example
#include <algorithm> #include <iostream> #include <vector> #include <functional> int main() { std::vector<int> v1{0, 1, 2, 3, 40, 40, 41, 41, 5}; // ^^ ^^ namespace ranges = std::ranges; auto i1 = ranges::adjacent_find(v1.begin(), v1.end()); if (i1 == v1.end()) { std::cout << "No matching adjacent elements\n"; } else { std::cout << "The first adjacent pair of equal elements is at [" << ranges::distance(v1.begin(), i1) << "] == " << *i1 << '\n'; } auto i2 = ranges::adjacent_find(v1, ranges::greater()); if (i2 == v1.end()) { std::cout << "The entire vector is sorted in ascending order\n"; } else { std::cout << "The last element in the non-decreasing subsequence is at [" << ranges::distance(v1.begin(), i2) << "] == " << *i2 << '\n'; } }
Output:
The first adjacent pair of equal elements is at [4] == 40 The last element in the non-decreasing subsequence is at [7] == 41
See also
(C++20) |
removes consecutive duplicate elements in a range (niebloid) |
finds the first two adjacent items that are equal (or satisfy a given predicate) (function template) |