std::ranges::search

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
(C++11)(C++11)(C++11)
(C++17)
Modifying sequence operations
Partitioning operations
Sorting operations
(C++11)
Binary search operations
Set operations (on sorted ranges)
Heap operations
(C++11)
Minimum/maximum operations
(C++11)
(C++17)

Permutations
Numeric operations
Operations on uninitialized storage
(C++17)
(C++17)
(C++17)
C library
 
Constrained algorithms
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutations
Constrained numeric operations
Fold operations
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::forward_iterator I1, std::sentinel_for<I1> S1,

          std::forward_iterator I2, std::sentinel_for<I2> S2,
          class Pred = ranges::equal_to,
          class Proj1 = std::identity,
          class Proj2 = std::identity >
requires  std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr ranges::subrange<I1>
  search( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

          Proj1 proj1 = {}, Proj2 proj2 = {} );
(1) (since C++20)
template< ranges::forward_range R1, ranges::forward_range R2,

          class Pred = ranges::equal_to,
          class Proj1 = std::identity,
          class Proj2 = std::identity>
requires  std::indirectly_comparable<ranges::iterator_t<R1>,
                                     ranges::iterator_t<R2>, Pred, Proj1, Proj2>
constexpr ranges::borrowed_subrange_t<R1>

  search( R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} );
(2) (since C++20)
1) Searches for the first occurrence of the sequence of elements [first2, last2) in the range [first1, last1). Elements are compared using binary predicate pred after being projected with proj2 and proj1, respectively.
2) Same as (1), but uses r1 as the first source range and r2 as the second source range, as if using ranges::begin(r1) as first1, ranges::end(r1) as last1, ranges::begin(r2) as first2, and ranges::end(r2) as last2.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first1, last1 - the range of elements to examine (aka haystack)
first2, last2 - the range of elements to search for (aka needle)
r1 - the range of elements to examine (aka haystack)
r2 - the range of elements to search for (aka needle)
pred - binary predicate to apply to the projected elements
proj1 - projection to apply to the elements in the first range
proj2 - projection to apply to the elements in the second range

Return value

1) Returns a ranges::subrange value that is the first occurrence of the sequence [first2, last2) (aka needle) in the range [first1, last1) (aka haystack), after application of the projections proj1 and proj2 to the elements of both sequences respectively with consequencing application of the binary predicate pred to compare projected elements.

If no such occurrence is found, ranges::subrange{last1, last1} is returned.

If the range to search for (aka needle) is empty, that is first2 == last2, then the ranges::subrange{first1, first1} is returned.
2) Same as (1) but the return type is ranges::borrowed_subrange_t<R1>.

Complexity

At most S*N applications of the corresponding predicate and each projection, where
(1) S = ranges::distance(first2, last2) and N = ranges::distance(first1, last1);
(2) S = ranges::distance(r2) and N = ranges::distance(r1).

Possible implementation

struct search_fn
{
  template<std::forward_iterator I1, std::sentinel_for<I1> S1,
         std::forward_iterator I2, std::sentinel_for<I2> S2,
         class Pred = ranges::equal_to,
         class Proj1 = std::identity,
         class Proj2 = std::identity>
  requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr ranges::subrange<I1>
    operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
               Proj1 proj1 = {}, Proj2 proj2 = {}) const {
        for (;; ++first1) {
          I1 it1 = first1;
          for (I2 it2 = first2;; ++it1, ++it2) {
            if (it2 == last2) return {first1, it1};
            if (it1 == last1) return {it1, it1};
            if (!std::invoke(pred, std::invoke(proj1, *it1), std::invoke(proj2, *it2)))
              break;
          }
        }
    }
 
  template<ranges::forward_range R1, ranges::forward_range R2,
         class Pred = ranges::equal_to,
         class Proj1 = std::identity,
         class Proj2 = std::identity>
  requires std::indirectly_comparable<ranges::iterator_t<R1>,
                                      ranges::iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr ranges::borrowed_subrange_t<R1>
    operator()(R1&& r1, R2&& r2, Pred pred = {},
               Proj1 proj1 = {}, Proj2 proj2 = {}) const {
      return (*this)(ranges::begin(r1), ranges::end(r1),
                     ranges::begin(r2), ranges::end(r2),
                     std::move(pred), std::move(proj1), std::move(proj2));
    }
};
 
inline constexpr search_fn search{};

Example

#include <algorithm>
#include <cctype>
#include <iostream>
#include <iterator>
#include <string_view>
 
using namespace std::literals;
 
void print(int id, const auto& haystack, const auto& needle, const auto& found) {
    std::cout << id << "). search(\"" << haystack << "\", \"" << needle << "\"); ";
    const auto first = std::distance(haystack.begin(), found.begin());
    const auto last = std::distance(haystack.begin(), found.end());
    if (found.empty()) {
        std::cout << "not found;";
    } else {
        std::cout << "found: \"";
        for (const auto x: found) { std::cout << x; }
        std::cout << "\";";
    }
    std::cout << " subrange: {" << first << ", " << last << "}\n";
}
 
int main()
{
    constexpr auto haystack {"abcd abcd"sv};
    constexpr auto needle {"bcd"sv};
 
    // the search uses iterator pairs begin()/end():
    constexpr auto found1 = std::ranges::search(
        haystack.begin(), haystack.end(),
        needle.begin(), needle.end());
    print(1, haystack, needle, found1);
 
    // the search uses ranges r1, r2:
    constexpr auto found2 = std::ranges::search(haystack, needle);
    print(2, haystack, needle, found2);
 
    // 'needle' range is empty:
    constexpr auto none {""sv};
    constexpr auto found3 = std::ranges::search(haystack, none);
    print(3, haystack, none, found3);
 
    // 'needle' will not be found:
    constexpr auto awl {"efg"sv};
    constexpr auto found4 = std::ranges::search(haystack, awl);
    print(4, haystack, awl, found4);
 
    // the search uses custom comparator and projections:
    constexpr auto bodkin {"234"sv};
    auto found5 = std::ranges::search(haystack, bodkin,
        [](const int x, const int y) { return x == y; }, // pred
        [](const int x) { return std::toupper(x); }, // proj1
        [](const int y) { return y + 'A' - '1'; } // proj2
        );
    print(5, haystack, bodkin, found5);
}

Output:

1). search("abcd abcd", "bcd"); found: "bcd"; subrange: {1, 4}
2). search("abcd abcd", "bcd"); found: "bcd"; subrange: {1, 4}
3). search("abcd abcd", ""); not found; subrange: {0, 0}
4). search("abcd abcd", "efg"); not found; subrange: {9, 9}
5). search("abcd abcd", "234"); found: "bcd"; subrange: {1, 4}

See also

finds the first two adjacent items that are equal (or satisfy a given predicate)
(niebloid)
finds the first element satisfying specific criteria
(niebloid)
finds the last sequence of elements in a certain range
(niebloid)
searches for any one of a set of elements
(niebloid)
returns true if one sequence is a subsequence of another
(niebloid)
finds the first position where two ranges differ
(niebloid)
searches for a number consecutive copies of an element in a range
(niebloid)
searches for a range of elements
(function template)