std::ranges::find, std::ranges::find_if, std::ranges::find_if_not
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I, std::sentinel_for<I> S, class T, class Proj = std::identity > |
(1) | (since C++20) |
template< ranges::input_range R, class T, class Proj = std::identity > requires std::indirect_binary_predicate<ranges::equal_to, |
(2) | (since C++20) |
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(3) | (since C++20) |
template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred > |
(4) | (since C++20) |
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(5) | (since C++20) |
template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred > |
(6) | (since C++20) |
Returns the first element in the range [first, last)
that satisfies specific criteria:
find
searches for an element equal to value
find_if
searches for an element for which predicate pred
returns truefind_if_not
searches for an element for which predicate pred
returns falser
as the source range, as if using ranges::begin(r) as first
and ranges::end(r) as last
.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists may not be specified when calling any of them.
- None of them is visible to argument-dependent lookup.
- When one of them is found by normal unqualified lookup for the name to the left of the function-call operator, it inhibits argument-dependent lookup.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | the range of elements to examine |
r | - | the range of the elements to examine |
value | - | value to compare the elements to |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
Iterator to the first element satisfying the condition or iterator equal to last
if no such element is found.
Complexity
At most last
- first
applications of the predicate and projection.
Possible implementation
First version |
---|
struct find_fn { template< std::input_iterator I, std::sentinel_for<I> S, class T, class Proj = std::identity > requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*> constexpr I operator()( I first, S last, const T& value, Proj proj = {} ) const { for (; first != last; ++first) { if (std::invoke(proj, *first) == value) { return first; } } return first; } template< ranges::input_range R, class T, class Proj = std::identity > requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::borrowed_iterator_t<R> operator()( R&& r, const T& value, Proj proj = {} ) const { return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj)); } }; inline constexpr find_fn find; |
Second version |
struct find_if_fn { template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred > constexpr I operator()( I first, S last, Pred pred, Proj proj = {} ) const { for (; first != last; ++first) { if (std::invoke(pred, std::invoke(proj, *first))) { return first; } } return first; } template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred > constexpr ranges::borrowed_iterator_t<R> operator()( R&& r, Pred pred, Proj proj = {} ) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr find_if_fn find_if; |
Third version |
struct find_if_not_fn { template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred > constexpr I operator()( I first, S last, Pred pred, Proj proj = {} ) const { for (; first != last; ++first) { if (!std::invoke(pred, std::invoke(proj, *first))) { return first; } } return first; } template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred > constexpr ranges::borrowed_iterator_t<R> operator()( R&& r, Pred pred, Proj proj = {} ) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr find_if_not_fn find_if_not; |
Example
#include <algorithm> #include <iostream> #include <iterator> int main() { namespace ranges = std::ranges; const int n1 = 3; const int n2 = 5; const auto v = {4, 1, 3, 2}; if (ranges::find(v, n1) != v.end()) { std::cout << "v contains: " << n1 << '\n'; } else { std::cout << "v does not contain: " << n1 << '\n'; } if (ranges::find(v.begin(), v.end(), n2) != v.end()) { std::cout << "v contains: " << n2 << '\n'; } else { std::cout << "v does not contain: " << n2 << '\n'; } auto is_even = [](int x) { return x % 2 == 0; }; if (auto result = ranges::find_if(v.begin(), v.end(), is_even); result != v.end()) { std::cout << "First even element in v: " << *result << '\n'; } else { std::cout << "No even elements in v\n"; } if (auto result = ranges::find_if_not(v, is_even); result != v.end()) { std::cout << "First odd element in v: " << *result << '\n'; } else { std::cout << "No odd elements in v\n"; } auto divides_13 = [](int x) { return x % 13 == 0; }; if (auto result = ranges::find_if(v, divides_13); result != v.end()) { std::cout << "First element divisible by 13 in v: " << *result << '\n'; } else { std::cout << "No elements in v are divisible by 13\n"; } if (auto result = ranges::find_if_not(v.begin(), v.end(), divides_13); result != v.end()) { std::cout << "First element indivisible by 13 in v: " << *result << '\n'; } else { std::cout << "All elements in v are divisible by 13\n"; } }
Output:
v contains: 3 v does not contain: 5 First even element in v: 4 First odd element in v: 1 No elements in v are divisible by 13 First element indivisible by 13 in v: 4
See also
(C++20) |
finds the first two adjacent items that are equal (or satisfy a given predicate) (niebloid) |
(C++20) |
finds the last sequence of elements in a certain range (niebloid) |
(C++20) |
searches for any one of a set of elements (niebloid) |
(C++20) |
finds the first position where two ranges differ (niebloid) |
(C++20) |
searches for a range of elements (niebloid) |
(C++11) |
finds the first element satisfying specific criteria (function template) |