std::ranges::count, std::ranges::count_if
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I, std::sentinel_for<I> S, class T, class Proj = std::identity > |
(1) | (since C++20) |
template< ranges::input_range R, class T, class Proj = std::identity > requires std::indirect_binary_predicate<ranges::equal_to, |
(2) | (since C++20) |
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(3) | (since C++20) |
template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred > |
(4) | (since C++20) |
Returns the number of elements in the range [first, last)
satisfying specific criteria.
value
.p
returns true.r
as the source range, as if using ranges::begin(r) as first
and ranges::end(r) as last
.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists may not be specified when calling any of them.
- None of them is visible to argument-dependent lookup.
- When one of them is found by normal unqualified lookup for the name to the left of the function-call operator, it inhibits argument-dependent lookup.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | the range of elements to examine |
r | - | the range of the elements to examine |
value | - | the value to search for |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
Number of elements satisfying the condition.
Complexity
Exactly last
- first
comparisons and projection.
Notes
For the number of elements in the range without any additional criteria, see std::ranges::distance.
Possible implementation
First version |
---|
struct count_fn { template< std::input_iterator I, std::sentinel_for<I> S, class T, class Proj = std::identity > requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*> constexpr std::iter_difference_t<I> operator()( I first, S last, const T& value, Proj proj = {} ) const { std::iter_difference_t<I> counter = 0; for (; first != last; ++first) { if (std::invoke(proj, *first) == value) { ++counter; } } return counter; } template< ranges::input_range R, class T, class Proj = std::identity > requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::range_difference_t<R> operator()( R&& r, const T& value, Proj proj = {} ) const { return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj)); } }; inline constexpr count_fn count; |
Second version |
struct count_if_fn { template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred > constexpr std::iter_difference_t<I> operator()( I first, S last, Pred pred, Proj proj = {} ) const { std::iter_difference_t<I> counter = 0; for (; first != last; ++first) { if (std::invoke(pred, std::invoke(proj, *first))) { ++counter; } } return counter; } template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred > constexpr ranges::range_difference_t<R> operator()( R&& r, Pred pred, Proj proj = {} ) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr count_if_fn count_if; |
Example
#include <algorithm> #include <iostream> #include <vector> int main() { std::vector<int> v{ 1, 2, 3, 4, 4, 3, 7, 8, 9, 10 }; namespace ranges = std::ranges; // determine how many integers in a std::vector match a target value. int target1 = 3; int target2 = 5; int num_items1 = ranges::count(v.begin(), v.end(), target1); int num_items2 = ranges::count(v, target2); std::cout << "number: " << target1 << " count: " << num_items1 << '\n'; std::cout << "number: " << target2 << " count: " << num_items2 << '\n'; // use a lambda expression to count elements divisible by 3. int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i){return i % 3 == 0;}); std::cout << "number divisible by three: " << num_items3 << '\n'; // use a lambda expression to count elements divisible by 11. int num_items11 = ranges::count_if(v, [](int i){return i % 11 == 0;}); std::cout << "number divisible by eleven: " << num_items11 << '\n'; }
Output:
number: 3 count: 2 number: 5 count: 0 number divisible by three: 3 number divisible by eleven: 0
See also
(C++20) |
returns the distance between an iterator and a sentinel, or between the beginning and end of a range (niebloid) |
(C++20) |
creates a subrange from an iterator and a count (customization point object) |
a view that consists of the elements of a range that satisfies a predicate (class template) (range adaptor object) | |
returns the number of elements satisfying specific criteria (function template) |