std::ranges::partition_copy, std::ranges::partition_copy_result
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O1, std::weakly_incrementable O2, |
(1) | (since C++20) |
template< ranges::input_range R, std::weakly_incrementable O1, std::weakly_incrementable O2, |
(2) | (since C++20) |
Helper types |
||
template<class I, class O1, class O2> using partition_copy_result = ranges::in_out_out_result<I, O1, O2>; |
(3) | (since C++20) |
[first, last)
to two different output ranges depending on the value returned by the predicate pred
. The elements that satisfy the predicate pred
after projection by proj
are copied to the range beginning at out_true
. The rest of the elements are copied to the range beginning at out_false
. The behavior is undefined if the input range overlaps either of the output ranges.r
as the source range, as if using ranges::begin(r) as first
, and ranges::end(r) as last
.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists may not be specified when calling any of them.
- None of them is visible to argument-dependent lookup.
- When one of them is found by normal unqualified lookup for the name to the left of the function-call operator, it inhibits argument-dependent lookup.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | the input range of elements to copy from |
r | - | the input range of elements to copy from |
out_true | - | the beginning of the output range for the elements that satisfy pred
|
out_false | - | the beginning of the output range for the elements that do not satisfy pred
|
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
{last, o1, o2}, where o1
and o2
are the ends of the output ranges respectively, after the copying is complete.
Complexity
Exactly ranges::distance(first, last) applications of the corresponding predicate comp
and any projection proj
.
Possible implementation
struct partition_copy_fn { template <std::input_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O1, std::weakly_incrementable O2, class Proj = std::identity, std::indirect_unary_predicate< std::projected<I, Proj>> Pred> requires std::indirectly_copyable<I, O1> && std::indirectly_copyable<I, O2> constexpr ranges::partition_copy_result<I, O1, O2> operator()( I first, S last, O1 out_true, O2 out_false, Pred pred, Proj proj = {} ) const { for (; first != last; ++first) if (!!std::invoke(pred, std::invoke(proj, *first))) *out_true = *first, ++out_true; else *out_false = *first, ++out_false; return {std::move(first), std::move(out_true), std::move(out_false)}; } template<ranges::input_range R, std::weakly_incrementable O1, std::weakly_incrementable O2, class Proj = std::identity, std::indirect_unary_predicate<std::projected<iterator_t<R>, Proj>> Pred> requires std::indirectly_copyable<ranges::iterator_t<R>, O1> && std::indirectly_copyable<ranges::iterator_t<R>, O2> constexpr ranges::partition_copy_result<ranges::borrowed_iterator_t<R>, O1, O2> operator()( R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {} ) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(out_true), std::move(out_false), std::move(pred), std::move(proj)); } }; inline constexpr partition_copy_fn partition_copy{}; |
Example
#include <algorithm> #include <cctype> #include <iostream> #include <vector> #include <iterator> int main() { const auto in = {'N', '3', 'U', 'M', '1', 'B', '4', 'E', '1', '5', 'R', '9'}; std::vector<int> o1(size(in)), o2(size(in)); auto pred = [](char c){ return std::isalpha(c); }; auto ret = std::ranges::partition_copy(in, o1.begin(), o2.begin(), pred); std::ostream_iterator<char> cout {std::cout, " "}; std::cout << "in = "; std::ranges::copy(in, cout); std::cout << "\no1 = "; std::copy(o1.begin(), ret.out1, cout); std::cout << "\no2 = "; std::copy(o2.begin(), ret.out2, cout); std::cout << '\n'; }
Output:
in = N 3 U M 1 B 4 E 1 5 R 9 o1 = N U M B E R o2 = 3 1 4 1 5 9
See also
(C++20) |
divides a range of elements into two groups (niebloid) |
(C++20) |
divides elements into two groups while preserving their relative order (niebloid) |
(C++20)(C++20) |
copies a range of elements to a new location (niebloid) |
(C++20)(C++20) |
copies a range of elements omitting those that satisfy specific criteria (niebloid) |
(C++11) |
copies a range dividing the elements into two groups (function template) |