std::ranges::partial_sort_copy, std::ranges::partial_sort_copy_result
|   Defined in header  <algorithm>
  | 
||
|   Call signature  | 
||
|   template< std::input_iterator I1, std::sentinel_for<I1> S1,           std::random_access_iterator I2, std::sentinel_for<I2> S2,  | 
(1) | (since C++20) | 
|   template< ranges::input_range R1, ranges::random_access_range R2,           class Comp = ranges::less, class Proj1 = std::identity,  | 
(2) | (since C++20) | 
|   Helper types  | 
||
|   template<class I, class O> using partial_sort_copy_result = ranges::in_out_result<I, O>;  | 
(3) | (since C++20) | 
Copies the first N elements from the source range [first, last), as if it was partially sorted with respect to comp and proj1, into the destination range [result_first, result_first + N), where N = min(L₁, L₂), L₁ is equal to ranges::distance(first, last), and L₂ is equal to ranges::distance(result_first, result_last).
The order of equal elements is not guaranteed to be preserved.
proj1, and the destination elements are projected using the function object proj2.r as the source range and result_r as the destination range, as if using ranges::begin(r) as first, ranges::end(r) as last, ranges::begin(result_r) as result_first, and ranges::end(result_r) as result_last.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists may not be specified when calling any of them.
 - None of them is visible to argument-dependent lookup.
 - When one of them is found by normal unqualified lookup for the name to the left of the function-call operator, it inhibits argument-dependent lookup.
 
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
| first, last | - | iterator-sentinel defining the source range to copy from | 
| r | - | the source range to copy from | 
| result_first, result_last | - | iterator-sentinel defining the destination range | 
| result_r | - | the destination range | 
| comp | - | comparison to apply to the projected elements | 
| proj1 | - | projection to apply to the elements of source range | 
| proj2 | - | projection to apply to the elements of destination range | 
Return value
An object equal to {last, result_first + N}.
Complexity
At most L₁•log(N) comparisons and 2•L₁•log(N) projections.
Possible implementation
struct partial_sort_copy_fn { template< std::input_iterator I1, std::sentinel_for<I1> S1, std::random_access_iterator I2, std::sentinel_for<I2> S2, class Comp = ranges::less, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_copyable<I1, I2> && std::sortable<I2, Comp, Proj2> && std::indirect_strict_weak_order<Comp, std::projected<I1, Proj1>, std::projected<I2, Proj2>> constexpr ranges::partial_sort_copy_result<I1, I2> operator()( I1 first, S1 last, I2 result_first, S2 result_last, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {} ) const { if (result_first == result_last) { return {std::move(ranges::next(std::move(first), std::move(last))), std::move(result_first)}; } auto out_last {result_first}; // copy first N elements for (; !(first == last or out_last == result_last); ++out_last, ++first) { *out_last = *first; } // convert N copied elements into a max-heap ranges::make_heap(result_first, out_last, comp, proj2); // process the rest of the input range (if any), preserving the heap property for (; first != last; ++first) { if (std::invoke(comp, std::invoke(proj1, *first), std::invoke(proj2, *result_first))) { // pop out the biggest item and push in a newly found smaller one ranges::pop_heap(result_first, out_last, comp, proj2); *(out_last - 1) = *first; ranges::push_heap(result_first, out_last, comp, proj2); } } // first N elements in the output range is still a heap - convert it into a sorted range ranges::sort_heap(result_first, out_last, comp, proj2); return {std::move(first), std::move(out_last)}; } template< ranges::input_range R1, ranges::random_access_range R2, class Comp = ranges::less, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_copyable<ranges::iterator_t<R1>, ranges::iterator_t<R2>> && std::sortable<ranges::iterator_t<R2>, Comp, Proj2> && std::indirect_strict_weak_order<Comp, std::projected<ranges::iterator_t<R1>, Proj1>, std::projected<ranges::iterator_t<R2>, Proj2>> constexpr ranges::partial_sort_copy_result<ranges::borrowed_iterator_t<R1>, ranges::borrowed_iterator_t<R2>> operator()( R1&& r, R2&& result_r, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {} ) const { return (*this)(ranges::begin(r), ranges::end(r), ranges::begin(result_r), ranges::end(result_r), std::move(comp), std::move(proj1), std::move(proj2)); } }; inline constexpr partial_sort_copy_fn partial_sort_copy{};  | 
Example
#include <algorithm> #include <forward_list> #include <functional> #include <iostream> #include <ranges> #include <string_view> #include <vector> void print(std::string_view rem, std::ranges::input_range auto const& v) { for (std::cout << rem; const auto& e : v) std::cout << e << ' '; std::cout << '\n'; } int main() { const std::forward_list source{4, 2, 5, 1, 3}; print("Write to the smaller vector in ascending order: ", ""); std::vector dest1{10, 11, 12}; print("const source list: ", source); print("destination range: ", dest1); std::ranges::partial_sort_copy(source, dest1); print("partial_sort_copy: ", dest1); print("Write to the larger vector in descending order:", ""); std::vector dest2{10, 11, 12, 13, 14, 15, 16}; print("const source list: ", source); print("destination range: ", dest2); std::ranges::partial_sort_copy(source, dest2, std::greater{}); print("partial_sort_copy: ", dest2); }
Output:
Write to the smaller vector in ascending order: const source list: 4 2 5 1 3 destination range: 10 11 12 partial_sort_copy: 1 2 3 Write to the larger vector in descending order: const source list: 4 2 5 1 3 destination range: 10 11 12 13 14 15 16 partial_sort_copy: 5 4 3 2 1 15 16
See also
|    (C++20)  | 
   sorts the first N elements of a range   (niebloid)  | 
|    (C++20)  | 
   sorts a range into ascending order   (niebloid)  | 
|    (C++20)  | 
   sorts a range of elements while preserving order between equal elements   (niebloid)  | 
|    (C++20)  | 
   turns a max heap into a range of elements sorted in ascending order   (niebloid)  | 
|    (C++20)  | 
   creates a max heap out of a range of elements   (niebloid)  | 
|    (C++20)  | 
   adds an element to a max heap   (niebloid)  | 
|    (C++20)  | 
   removes the largest element from a max heap   (niebloid)  | 
|    copies and partially sorts a range of elements   (function template)  |